110 research outputs found

    Triple-gated motion and blood pool clearance corrections improve reproducibility of coronary 18F-NaF PET

    Get PDF
    PurposeTo improve the test-retest reproducibility of coronary plaque 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) uptake measurements.MethodsWe recruited 20 patients with coronary artery disease who underwent repeated hybrid PET/CT angiography (CTA) imaging within 3 weeks. All patients had 30-min PET acquisition and CTA during a single imaging session. Five PET image-sets with progressive motion correction were reconstructed: (i) a static dataset (no-MC), (ii) end-diastolic PET (standard), (iii) cardiac motion corrected (MC), (iv) combined cardiac and gross patient motion corrected (2 × MC) and, (v) cardiorespiratory and gross patient motion corrected (3 × MC). In addition to motion correction, all datasets were corrected for variations in the background activities which are introduced by variations in the injection-to-scan delays (background blood pool clearance correction, BC). Test-retest reproducibility of PET target-to-background ratio (TBR) was assessed by Bland-Altman analysis and coefficient of reproducibility.ResultsA total of 47 unique coronary lesions were identified on CTA. Motion correction in combination with BC improved the PET TBR test-retest reproducibility for all lesions (coefficient of reproducibility: standard = 0.437, no-MC = 0.345 (27% improvement), standard + BC = 0.365 (20% improvement), no-MC + BC = 0.341 (27% improvement), MC + BC = 0.288 (52% improvement), 2 × MC + BC = 0.278 (57% improvement) and 3 × C + BC = 0.254 (72% improvement), all p < 0.001). Importantly, in a sub-analysis of 18F-NaF-avid lesions with gross patient motion > 10 mm following corrections, reproducibility was improved by 133% (coefficient of reproducibility: standard = 0.745, 3 × MC = 0.320).ConclusionJoint corrections for cardiac, respiratory, and gross patient motion in combination with background blood pool corrections markedly improve test-retest reproducibility of coronary 18F-NaF PET

    Recovery and normalization of triple coincidences in PET

    Get PDF
    Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements.Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners.Results: The addition of triple-coincidence events with the authors’ method increased peak NEC rates of the scanner by 26.6% and 32% for mouse- and rat-sized objects, respectively. This increase in NEC-rate performance was also reflected in the image-quality metrics. Images reconstructed using double and triple coincidences recovered using their method had better signal-to-noise ratio than those obtained using only double coincidences, while preserving spatial resolution and contrast. Distribution of triple coincidences using an equal-weighting scheme increased apparent system sensitivity but degraded image quality. The performance boost provided by the inclusion of triple coincidences using their method allowed to reduce the acquisition time of standard imaging procedures by up to ∼25%.Conclusions: Recovering triple coincidences with the proposed method can effectively increase the sensitivity of current clinical and preclinical PET systems without compromising other parameters like spatial resolution or contrast.This work was funded by Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid (Spain) through the Madrid-MIT M + Visión Consortium. The authors also acknowledge the company Sedecal S.A. (Madrid, Spain) and the M + Visión Faculty for their support during this work.Publicad

    Validation of a small-animal PET simulation using GAMOS: a Geant4-based framework

    Full text link
    onte Carlo-based modelling is a powerful tool to help in the design and optimization of positron emission tomography (PET) systems. The performance of these systems depends on several parameters, such as detector physical characteristics, shielding or electronics, whose effects can be studied on the basis of realistic simulated data. The aim of this paper is to validate a comprehensive study of the Raytest ClearPET small-animal PET scanner using a new Monte Carlo simulation platform which has been developed at CIEMAT (Madrid, Spain), called GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations). This toolkit, based on the GEANT4 code, was originally designed to cover multiple applications in the field of medical physics from radiotherapy to nuclear medicine, but has since been applied by some of its users in other fields of physics, such as neutron shielding, space physics, high energy physics, etc. Our simulation model includes the relevant characteristics of the ClearPET system, namely, the double layer of scintillator crystals in phoswich configuration, the rotating gantry, the presence of intrinsic radioactivity in the crystals or the storage of single events for an off-line coincidence sorting. Simulated results are contrasted with experimental acquisitions including studies of spatial resolution, sensitivity, scatter fraction and count rates in accordance with the National Electrical Manufacturers Association (NEMA) NU 4-2008 protocol. Spatial resolution results showed a discrepancy between simulated and measured values equal to 8.4% (with a maximum FWHM difference over all measurement directions of 0.5 mm). Sensitivity results differ less than 1% for a 250–750 keV energy window. Simulated and measured count rates agree well within a wide range of activities, including under electronic saturation of the system (the measured peak of total coincidences, for the mouse-sized phantom, was 250.8 kcps reached at 0.95 MBq mL−1 and the simulated peak was 247.1 kcps at 0.87 MBq mL−1). Agreement better than 3% was obtained in the scatter fraction comparison study. We also measured and simulated a mini-Derenzo phantom obtaining images with similar quality using iterative reconstruction methods. We concluded that the overall performance of the simulation showed good agreement with the measured results and validates the GAMOS package for PET applications. Furthermore, its ease of use and flexibility recommends it as an excellent tool to optimize design features or image reconstruction techniques

    A comparison of rotation- and blob-based system models for 3D SPECT with depth-dependent detector response

    Full text link
    We compare two different implementations of a 3D SPECT system model for iterative reconstruction, both of which compensate for non-uniform photon attenuation and depth-dependent system response. One implementation performs fast rotation of images represented using a basis of rectangular voxels, whereas the other represents images using a basis of rotationally symmetric volume elements. In our simulations the blob-based approach was found to slightly outperform the rotation-based one in terms of the bias-variance trade-off in the reconstructed images. Their difference can be significant, however, in terms of computational load. The rotation-based method is faster for many typical SPECT reconstruction problems, but the blob-based one can be better-suited to cases where the reconstruction algorithm needs to process one volume element at a time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48977/2/pmb4_11_003.pd

    The future of hybrid imaging—part 2: PET/CT

    Get PDF
    Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises the state-of-the-art of dual-modality imaging with a focus on clinical applications. We highlight selected areas for potential improvement of combined imaging technologies and new applications. In the second part, we briefly review the background of dual-modality PET/CT imaging, discuss its main applications and attempt to predict technological and methodological improvements of combined PET/CT imaging. After a decade of clinical evaluation, PET/CT will continue to have a significant impact on patient management, mainly in the area of oncological diseases. By adopting more innovative acquisition schemes and data processing PET/CT will become a fast and dose-efficient imaging method and an integral part of state-of-the-art clinical patient management

    Preliminary Evaluation of a Combined MicroPET®-MR System

    No full text
    • …
    corecore